大数据分析方法

大数据分析普遍存在的方法及理论有哪些PEST分析法

大数据分析方法

文章插图
        PEST分析理论主要用于行业分析 。PEST分析法用于对宏观环境的分析 。宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量 。
对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析 。
2.逻辑树分析法
        逻辑树分析理论课用于业务问题专题分析 。逻辑树又称问题树、演绎树或分解树等 。逻辑树是分析问题最常使用的工具之一,它将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展 。
把一个已知问题当成树干,然后开始考虑这个问题和哪些相关问题有关 。
(缺点:逻辑树分析法涉及的相关问题可能有遗漏 。)
新手的话,可以考虑上面两点 。
大数据的统计分析方法有哪些您好朋友,上海献峰科技指出:常用数据分析方法有,
1.
聚类分析、
2.因子分析、
3.相关分析、
4.对应分析、
5.回归分析、
6.方差分析;
问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、cronbach’a信度系数分析、结构方程模型分析(structural
equations
modeling)

数据分析常用的图表方法:柏拉图(排列图)、直方图(histogram)、散点图(scatter
diagram)、鱼骨图(ishikawa)、fmea、点图、柱状图、雷达图、趋势图 。




采纳不足可追问
如何运用大数据分析?1、可视化分析



大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了 。

2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值 。

3. 预测性分析

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据 。

4. 语义引擎

非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据 。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息 。

5.数据质量和数据管理

【大数据分析方法】大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值 。