中心极限定理例题

概率论与数理统计对微积分要求多少?概率论与数理统计,基本很少用到微积分的知识,挺好学的,最后考试满分的人不少,90多分的一大把,下面我随便贴出本概数书的目录你看看就知道了,跟微积分沾边的是在不多 。【中心极限定理例题】

中心极限定理例题

文章插图


目录
前言
第1章 随机事件与概率
1.1 随机事件与样本空间
习题1.1
1.2 概率
习题1.2
1.3 独立试验序列概型
习题1.3
本章小结
自测题1
第2章 随机变量及分布
2.1 随机变量
习题2.1
2.2 离散型随机变量的分布
习题2.2
2.3 连续型随机变量的分布
习题2.3
2.4 随机变量函数的分布
习题2.4
*2.5 二维随机变量简介
*习题2.5
本章小结
自测题2
第3章 随机变量的数字特征
3.1 数学期望
习题3.1
3.2 方差
习题3.2
*3.3 矩、协方差和相关系数
*习题3.3
本章小结
自测题3
*第4章 大数定律与中心极限定律
4.1 大数定律
*习题4.1
4.2 中心极限定理
*习题4.2
本章小结
*自测题4
第5章 样本及其分布
5.1 总体、样本与统计量
习题5.1
5.2 样本均值与样本方差
习题5.2
5.3 直方图
习题5.3
5.4 抽样分布
习题5.4
本章小结
自测题5
第6章 参数估计
6.1 估计量的优劣标准
习题6.1
6.2 点估计
习题6.2
6.3 区间估计
习题6.3
本章小结
自测题6
第7章 假设检验
7.1 假设检验的基本概念
习题7.1
7.2 一个正态总体的假设检验
习题7.2
*7.3 两个正态总体的假设检验
*习题7.3
本章小结
自测题7
附录A 模拟试题及参考答案
附录B 2005~2009年成人高等学校专升本招生全国统一考试高等数学试题(概率论部分)
附录C 泊松分布概率分布表
附录D 标准正态分布函数表
附录E t分布双侧临界值表
附录F X2分布上侧临界值表
附录G F分布上侧临界值表
概率论中的林德伯格定理求证明定义称随机变量列 依概率收敛于随机变量Z,如果对任意给定的 ,有

随机变量列 依概率收敛于A,有时记作

特别,Z可以是常数A或 .
二 大数定律
1、切比雪夫(切贝绍夫)大数定律设 为两两独立(或两两不相关)的随机变量列, 存在,且存在常数C,使 ,则对任何给定的 ,有

切比雪夫大数定律是切比雪夫不等式的推论(见(4.7)式).
2、伯努利大数定律设 是“事件A在试验中出现”的概率; 是n次独立重复试验(伯努利试验)中事件A出现的频率,则 依概率收敛于 :

直观上表示当n充分大时 .
3、辛钦大数定律设 独立同分布随机变量,只要数学期望存在,则

即当n充分大时,有 .
三 中心极限定理中心极限定理是关于“随机变量之和的极限分布是正态分布”的一系列定理的总称.
1、棣莫弗-拉普拉斯定理设随机变量X服从参数为 的二项分布,则当n充分大时,X近似地服从正态分布 或近似地

(1) 局部定理对于任意p(0<p<1)和 ,当n充分大时,有

(2) 积分定理对于任意p(0<p<1)和 ,当n充分大时,

其中 .
2、列维-林德伯格定理设 是独立同分布随机变量,其数学期望和方差存在: ,,则当n充分大时近似地

即对于任意实数 ,当n充分大时,有

其中 ;

其中 .
三、典型例题及其分析
例5.2.1在每次试验中,事件 发生的概率为0.5,利用切比雪夫不等式估计:在1000次试验中事件 发生的次数在400次至600次之间的概率.
【思路】设1000次试验中事件 发生的次数为 ,则 服从参数为 的二项分布,因而 再用切比雪夫不等式估计概率
【解】 在切比雪夫不等式 中,取 则事件 发生的次数在400次至600次之间的概率为

【解毕】
例5.2.2 如果随机变量 的概率密度为 ,且 存在,证明:对任意 有

【思路】利用切比雪夫不等式的证明方法.
【证明】由于函数 在 内单调递增,故事件 ,因此

【证毕】
【技巧】证明中的关键一步是对被积函数乘以大于1的因子 ,使等式变为不等式.次题实际上是考查切比雪夫不等式的证明.
例5.2.3 设随机变量 相互独立,且服从相同的分布: 又 存在 .试证明:对任意 有

【思路】 类似于切比雪夫大数定律的证明.
【证明】 由于 的期望为

令 的方差为 ,则

由于 仍相互独立的,故 的期望和方差分别为

对 应用切比雪夫不等式知

当 时,由极限的夹逼定理知

【证毕】
【寓意】本题是考查切比雪夫大数定律的证明技巧.结论的另一种写法为: ,即样本二阶矩依概率收敛于总体二阶矩.这是统计中的一重要结论.
例5.3.1某保险公司经多年的资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中被盗的索赔数为随机变量
(1) 写出 的概率分布;
(2) 利用德莫佛-拉普拉斯定理,求被盗德索赔户数不少于14户且不多于30户的概率近似值.
(1988年考研题)
【解】 (1)据题意可知,100家索赔户中被盗的索赔户数 ,即 的分布律为

(2)由 利用德莫佛-拉普拉斯定理知

【解毕】
【技巧】 德莫佛-拉普拉斯定理在实际中由广泛的应用,运用此定理计算概率近似值时,其关键是:“标准化”和“正态近似”,当 越大时,所得得近似值越精确.
例5.3.2计算器在进行加法时,将每一加数舍入最靠近它的整数.设所有舍入误差是独立的,且在 上服从均匀分布.
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?
(2) 最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?
【思路】设每个加数的舍入误差为 ,由题设知 独立同分布,且 因此,可利用独立同分布的中心极限定理,即林德伯格-列维中心极限定理,来进行近似计算.
【解】 令 同上所设,由于 ,从而

(1) 记 为将1500个数相加的误差总和,则有 ,从而由林德伯格-列维中心极限定理知 近似地服从 ,从而

即误差总和的绝对值超过15的概率约为0.1802.
(2)记 表示将n个数相加的误差总和,要使 由林德伯格-列维定理可知, 近似服从 .故


查表得 故
故最多有443个数相加使得误差总和的绝对值小于10的概率不小于0.90.
【解毕】
【寓意】本题是独立同分布中心极限定理——林德伯格-列维定理的典型应用题,解题中关键还是要将所求问题“标准化”为定理所要求的形式.
综例5.4.1现有一大批种子,其中良种占1/6,现从中任取6000粒种子,试分别用切比雪夫不等式和用中心极限定理计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率.
【解】 设随机变量 表示所取6000粒种子中良种的粒数,由题意可知, ,于是

(1) 要估计的概率为 相当于在切比雪夫不等式中取 于是由切比雪夫不等式可得

(2) 由德莫佛-拉普拉斯中心极限定理,二项分布 可用正态分布 近似 。于是所求概率为

【解毕】
【寓意】从本例看出:由切比雪夫不等式只能得出要求的概率不小于0.7685,而由中心极限定理可得到要求的概率近似等于0.9625.从而可知,由切比雪夫不等式得到的下界是十分粗糙的,但由于它的要求较低,只需知道 的期望与方差,因而在理论上由许多应用.
综例5.4.2设 在区间 上连续,并记 设随机变量 服从 上的均匀分布, 独立且与 同分布,设

(1) 求 和 ,并证明:
(2) 对任意 ,利用中心极限定理估计概率 .
【解】 (1)由于 ,且 与 独立同分布,故

又因为 相互独立,故 也相互独立,从而

于是,对任意 ,由切比雪夫不等式得

所以
(2) 由林德伯格-列维中心极限定理知

因此,对任意 ,有

【解毕】
【寓意】本题是大数定律与中心极限定理的一个综合题,其中涉及的期望与方差的计算以及极限定理的运用都是经典的方法,读者应当熟练掌握和运用.本题实际上是实际问题中,利用蒙特卡罗方法计算积分的理论依据之一.
综例5.4.3抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品的次品率为10%,问至少应抽所少个产品检查才能保证拒绝接受该产品的概率达到0.9?
【解】 设 为至少应抽的产品数, 为其中的次品数,对 故由德莫佛-拉普拉斯定理有

当 充分大时,
由题意知


查表得即
【解毕】
【技巧】本题是一典型的用德莫佛-拉普拉斯定理近似计算的题.从解题过程中可以发现,二项分布 其实可看成是一个独立同分布的0-1分布的和,即 其中
综例5.4.4设某种器件使用寿命(单位:小时)服从指数分布,平均使用寿命为20小时,具体使用时是当一器件损坏后立即更另一新器件,如此继续,已知每一器件进价为a元,试求在年计中应为此器件作多少元预算,才可以有95%的把握一年够用(定一年有2000个工作小时).
【解】设第 个器件的使用寿命为 由于 服从参数为 的指数分布,且 所以 ,从而

假定一年至少准备 件才能有95%的把握够用,若记 相互独立,则问题应为求 ,
由独立同分布的中心极限定理知


查表得 即
因此每年应为此器件至少作出118a(元)的预算,才能有95%的把握保证一年够用.
【解毕】
综例5.4.5设某农贸市场某商品每日价格的变化是均值为0,方差为 的随机变量,即有关系式

其中, 表示第n天该商品的价格, 为均值为0,方差为 的独立同分布随机变量( 表示第n天该商品价格的增加数),如果今天该商品的价格为100,求18天后该商品的价格在96与104之间的概率.
【思路】 设 表示今天该商品的价格, 为18天后该商品的价格,则

因此,问题为求 而这个概率可利用林德伯格-列维的独立同分布中心极限定理来近似确定.
【解】 由于 且 是独立同分布的, 从而,由林德伯格-列维定理知

【解毕】
【技巧】本题的关键是要将 表示为 从而将问题转化为求独立同分布随机变量和 落在某个区间的概率,而这个问题的解决只需用林德伯格-列维定理就可以了.
综例5.4.6假设 是来自总体 的简单随机样本,已知 试证:当n充分大时,随机变量 近似服从正态分布,并指出其分布参数.
(1996年考研题)
【证明】 若设 ,则由于 是来自总体 的简单随机样本.故 独立同分布,且与 有相同分布,从而 也是独立同分布,且

于是,根据独立同分布的林德伯格-列维中心极限定理,得



亦即 近似服从标准正态分布 ,故当n充分大时,近似地有

【证毕】
【寓意】本题其实是数理统计中,大样本场合下统计量 得渐进分布得计算问题,这类问题在求统计量的抽样分布时是经常出现的,关键是利用独立同分布的中心极限定理来求它们的近似分布.
概率论与数理统计分版本吗《新世纪高级应用型人才培养系列教材·概率论与数理统计》是一本由同济大学出版社出版的书籍 。
《概率论与数理统计(工程数学)(第2版)》分为两大部分:第一部分为概率论基础,包括前5章内容;第二部分为数理统计,包括后4章内容 。第一部分包括:随机事件及其概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理.第二部分包括:数理统计的基本思想、参数估计、假设检验、线性回归、方差分析和正交设计,《概率论与数理统计(工程数学)(第2版)》基本上只用到微积分和线性代数的知识,凡是具备这两门高等数学知识的读者,都可以使用《概率论与数理统计(工程数学)(第2版)》作为学习《概率论与数理统计》课程的教材 。
书名
概率论与数理统计
出版社
同济大学出版社
定价
24.00 元[1]
开本
16 开
装帧
平装
相关图书
我的订单

更多图书
概率论与数理统计9787560841922
限时满减
¥17.4来自度小店
去购买
概率论与数理统计 孟晗 编【正版】
¥9来自京东
去购买
概率论与数理统计孟晗科学与自然9787560841922 概率论高等学校教材
¥16.3来自京东
去购买
概率论与数理统计 孟晗 编 同济大学出版社 9787560841922
¥19.5来自京东
去购买
【正版现货】概率论与数理统计
¥25.6来自京东
去购买
概率论与数理统计
¥31.2来自京东
去购买
内容简介图书目录TA说
内容简介
《概率论与数理统计(工程数学)(第2版)》内容丰富,重点突出,但是由于课时和专业原因,教师在实际授课时,可以根据专业特点,在完成基本内容的基础上,有选择地讲授 。[1]
图书目录
第2版 前言
第一章 随机事件及其概率
第一节 随机事件及其运算
一、随机试验与样本空间
二、随机事件
三、事件的关系与运算
习题 1-1
第二节 随机事件的概率
一、概率的统汁定义
二、古典概型
二、几何概率
四、概率的公理化定义
习题 1-2
第三节 条件概率与全概率公式
一,条件概率勺乘法公式
二、全概率公式与贝叶斯公式
习题 1-3
第四节 随机事件的独立性
习题 1-4
第五节 伯劳利慨型
习题 1-5
第二章 随机变量及其分布
第一节 随机变量
第二节 离散型随机变量及其概率分布
一、两点分布(0-1分布或伯努利分布)
二、二项分布
三、泊松分布
四、超几何分布
五、几何分布
六、帕斯卡分布
习题 2-2
第三节 随机变量的分布函数
习题 2-3
第四节 连续型随机变量及其概率密度
一、均匀分布
二、指数分布
三、正态分布
习题 2-4
第五节 随机变量函数的分布
习题 2-5
第三章 多维随机变量及其分布
第一节 多维随机变量
习题 3-1
第二节 边缘分布
习题 3-2
第三节 条件分布
习题 3-3
第四节 随机变量的独立性
习题 3-4
第五节 多维随机变量函数的分布
习题 3-5
第四章 随机变量的数字特征
第一节 数学期望
习题 4-1
第二节 方差
习题 4-2
第三节 协方差及相关系数
习题 4-3
第四节 随机变量的其他数字特征
习题 4-4
第五章 大数定律与中心极限定理
第一节 大数定律
习题 5-1
第二节 中心极限定理
习题 5-2
第六章 数理统计的基本思想
第一节 总体与样本
编辑
传视频
TA说
1
目录
在【百度APP-我的】