直线垂直斜率关系

垂直直线的斜率关系是什么?两条垂直相交直线的斜率相乘积为-1 。如果其中一条直线的斜率不存在,则,另一条直线的斜率=0 。如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率 。当直线L的斜率不存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率 。

直线垂直斜率关系

文章插图
斜率,亦称“角系数”,表示一条直线相对于横轴的倾斜程度 。一条直线与某平面直角坐标系横轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率 。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示 。
当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率 。如果两条直线的斜率都存在,则,它们的斜率之积=-1 。如果其中一条直线的斜率不存在,则,另一条直线的斜率=0 。如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率 。
计算公式
斜率计算:ax+by+c=0中,k=-a/b,直线斜率公式:k=(y2-y1)/(x2-x1),两条垂直相交直线的斜率相乘积为-1:k1*k2=-1,当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小 。
在物理中,斜率也有很重要的意义,电源的电动势曲线和灯泡的伏安特性曲线的交点,就是灯泡在 这个电动势(实际电压)下工作的电流 。
两条直线垂直,斜率有什么关系?如果两条直线的斜率都存在 。则,它们的斜率之积=-1 。
如果其中一条直线的斜率不存在 。则,另一条直线的斜率=0 。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率 。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率 。
扩展资料:
当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b.
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1.
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越大,斜率越小 。
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度 。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述 。导数的几何意义是该函数曲线在这一点上的切线斜率 。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势 。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的 。
参考资料:---直线的斜率
两直线垂直斜率关系是什么?两条垂直相交直线的斜率相乘积为-1 。斜率是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量 。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示 。
斜率又称“角系数”:
是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度 。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率 。
如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率 。当直线L的斜率存在时,对于一次函数y=kx+b,(斜截式)k即该函数图像的斜率 。
当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b 。当直线L的斜率存在时,点斜式y1-y2=k(x1-x2) 。对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成角的正切值,即k=tanα 。斜率计算:ax+by+c=0中,k=-a/b 。
两直线垂直斜率关系证明证明如下:
设两条直线的斜率为k1,k2,倾斜角为a,b 。
如果两条直线垂直,那么它们之间的夹角为90度 。
所以tan(a-b)=tan90=(tana-tanb)/(1+tanatanb)=无穷大 。
因为tana=k1,tanb=k2 。
所以1+tanatanb=1+k1k2=0 。
因此k1k2=-1 。
方法二:
设一条直线的斜率是tana,另一条是tanb,两条线的夹角为b-a 。
tan(b-a)=[tanb-tana]/[1+tana tanb] 。
如果 1 + tana tanb = 0,即 tana tanb = -1 。
那么 b - a = 90度 。
【直线垂直斜率关系】所以,结论是:两条直线如果互相垂直,则两直线的斜率之积为-1 。
两直线垂直斜率的关系两直线垂直,在两者斜率都存在的前提下,其斜率的乘积为-1;如果其中直线不存在斜率,则另一条直线斜率为0 。对于两条互相垂直的直线而言,它们的斜率互为倒数,因此其斜率的乘积为-1 。
斜率是什么
斜率指的是一条直线或是曲线的切线与横坐标轴倾斜程度的量 。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示 。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像的斜率 。
当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率;当直线L的斜率存在时,点斜式y2—y1=k(X2—X1);当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1 。对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα 。
斜率计算:ax+by+c=0中,k=-a/b,直线斜率公式:k=(y2-y1)/(x2-x1),两条垂直相交直线的斜率相乘积为-1:k1*k2=-1,当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小 。